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Applications and Significance

Stereo image processing [1]

Workplace safety predictions [2]

Hospital patient experience [3]

Insurance risk analysis [4]

Error correcting codes [5]

These applications can benefit from being able 

to make faster predictions on larger graphs.
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Metrics
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Convergence coverage
How big are the graphs that converge?

Convergence rate
How fast can we converge?

Scalability
How well does rate improve with more resources?

Efficiency
How well do we deal with priority queue overhead?
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Program Flow
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while (updates > convergence_criteria) {

pick_updates();

compute_beliefs();

send_updates();

}
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Algorithm How do updates happen? Coverage Rate Scalability Efficiency

Bulk Synchronous [6] Synchronous, single-threaded Poor Poor None N/A

Parallel [7] Synchronous, multi-threaded Poor Poor Linear N/A

Residual [8] Asynchronous, strictly-ordered Good Good None Poor

Residual Splash [9] Asynchronous, strictly-ordered 

and partitioned

Good Good Sub-linear Poor

Relaxed-priority [10] Loosely-ordered asynchronous Okay Okay Sub-linear Okay

Speculative Parallel 

Residual [11]

Asynchronous, strict-order 

avoided using speculation

Good Good Linear Good
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Task-Based Hardware Parallelism

Spatially-Located Ordered Tasks

Chronos [12]
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Task-Based Hardware Parallelism
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while (updates > convergence_criteria) {

pick_updates();

compute_beliefs();

send_updates();

}
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Speculation Extracts Parallelism by Relaxing Order

Chronos [12]
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Research Gap

Existing accelerators are 

● overly specific [5]

● too costly to implement [11]

General Belief Propagation Accelerator on Chronos
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Design Goal

Eliminate deadlocks while retaining functional correctness

Scaling and optimizing to improve:

● Convergence coverage

● Convergence rate

● Scalability

● Efficiency
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System Diagram
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Deadlock Avoidance Prioritizes the GVT

28Introduction ● Design ● Results ● Conclusion 

Core Core Core Core

Task Send 

Buffer

Local 

virtual 

time

Global virtual 

time (GVT)

Arbiter



Prioritizing the GVT with Reservations
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Reservation for GVT
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Prioritizing the GVT with Resource Aborts
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Resource Aborts
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Tile

Deadlock Avoidance
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Task Held Back



Tile

Deadlock Avoidance
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Results

1. Coverage improved by removing deadlocks that occur with 

large graphs

2. Rate improved by optimizing size and configuration of 

accelerator

3. Scalability demonstrated with more PEs computing larger 

graphs

4. Efficiency used to extract parallelism by lowering priority queue 

overhead
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Conclusions

Relaxed-priority BP and task-based parallelism can be combined to 

improve convergence coverage, convergence rate, and scalability of 

belief propagation through increased efficiency.

Implementing the accelerator on an FPGA makes it accessible for use 

in broader applications.
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