
Accelerating Belief Propagation with 

Task-Based Hardware Parallelism

Balaji Venkatesh, Leo Han, Mark C. Jeffrey

May 27th, 2025

1



Innovations in 

relaxed-priority 

belief propagation

Hardware support 

for priority-ordered 

irregular algorithms

2Introduction ● Design ● Results ● Conclusion 



3

Belief Propagation

Mississauga

Oakville

Toronto

Markham Pickering

Vaughan

Stouffville

Introduction ● Design ● Results ● Conclusion 



4

Belief Propagation

Mississauga

Oakville

Toronto

Markham Pickering

Vaughan

Stouffville

10

5

2

5 3

2
4

1

5

Introduction ● Design ● Results ● Conclusion 



5

Belief Propagation

Mississauga

Oakville

Toronto

Markham Pickering

Vaughan

Stouffville

0.1

0.9

0.2

0.5
0.3

0.2

0.4

0.1

0.5

Introduction ● Design ● Results ● Conclusion 



6

Belief Propagation

Mississauga

Oakville

Toronto

Markham Pickering

Vaughan

Stouffville

0.1

0.9

0.2

0.5
0.3

0.2

0.4

0.1

0.5

70%

90%

0%

Introduction ● Design ● Results ● Conclusion 



7

Belief Propagation

Mississauga

Oakville

Toronto

Markham Pickering

Vaughan

Stouffville

0.1

0.9

0.2

0.5
0.3

0.2

0.4

0.1

0.5

70%

90%

0%

Introduction ● Design ● Results ● Conclusion 



8

Belief Propagation

Mississauga

Oakville

Toronto

Markham Pickering

Vaughan

Stouffville

0.1

0.9

0.2

0.5
0.3

0.2

0.4

0.1

0.5

70%

80%

0%

10%

85% 70%

Introduction ● Design ● Results ● Conclusion 



9

Belief Propagation

Mississauga

Oakville

Toronto

Markham Pickering

Vaughan

Stouffville

0.1

0.9

0.2

0.5
0.3

0.2

0.4

0.1

0.5

70%

80%

75%

80%
30%

20%

0%

Introduction ● Design ● Results ● Conclusion 



Applications and Significance

Stereo image processing [1]

Workplace safety predictions [2]

Hospital patient experience [3]

Insurance risk analysis [4]

Error correcting codes [5]

These applications can benefit from being able 

to make faster predictions on larger graphs.

10Introduction ● Design ● Results ● Conclusion 



Metrics

11

Convergence coverage
How big are the graphs that converge?

Convergence rate
How fast can we converge?

Scalability
How well does rate improve with more resources?

Efficiency
How well do we deal with priority queue overhead?

Introduction ● Design ● Results ● Conclusion 



Program Flow

12

while (updates > convergence_criteria) {

pick_updates();

compute_beliefs();

send_updates();

}

Introduction ● Design ● Results ● Conclusion 



13

Synchronous Update Order

Mississauga

Oakville

Toronto

Markham Pickering

Vaughan

Stouffville

Introduction ● Design ● Results ● Conclusion 



14

Synchronous Update Order

Mississauga

Oakville

Toronto

Markham Pickering

Vaughan

Stouffville

Introduction ● Design ● Results ● Conclusion 

Computing…
Computing…

Computing…

Computing…

Computing…
Computing…

Computing…



15

Synchronous Update Order

Mississauga

Oakville

Toronto

Markham Pickering

Vaughan

Stouffville

Introduction ● Design ● Results ● Conclusion 



16

Residual Update Order

Mississauga

Oakville

Toronto

Markham Pickering

Vaughan

Stouffville

Introduction ● Design ● Results ● Conclusion 



17

Residual Update Order

Mississauga

Oakville

Toronto

Markham Pickering

Vaughan

Stouffville

Introduction ● Design ● Results ● Conclusion 

Computing…



18

Residual Update Order

Mississauga

Oakville

Toronto

Markham Pickering

Vaughan

Stouffville

Introduction ● Design ● Results ● Conclusion 



19

Residual Splash Update Order

Mississauga

Oakville

Toronto

Markham Pickering

Vaughan

Stouffville

Introduction ● Design ● Results ● Conclusion 



20

Relaxed-Priority Update Order

Mississauga

Oakville

Toronto

Markham Pickering

Vaughan

Stouffville

Introduction ● Design ● Results ● Conclusion 



21

Algorithm How do updates happen? Coverage Rate Scalability Efficiency

Bulk Synchronous [6] Synchronous, single-threaded Poor Poor None N/A

Parallel [7] Synchronous, multi-threaded Poor Poor Linear N/A

Residual [8] Asynchronous, strictly-ordered Good Good None Poor

Residual Splash [9] Asynchronous, strictly-ordered 

and partitioned

Good Good Sub-linear Poor

Relaxed-priority [10] Loosely-ordered asynchronous Okay Okay Sub-linear Okay

Speculative Parallel 

Residual [11]

Asynchronous, strict-order 

avoided using speculation

Good Good Linear Good

Introduction ● Design ● Results ● Conclusion 

Algorithmic Innovations



Task-Based Hardware Parallelism

Spatially-Located Ordered Tasks

Chronos [12]

22Introduction ● Design ● Results ● Conclusion 



Task-Based Hardware Parallelism

23

while (updates > convergence_criteria) {

pick_updates();

compute_beliefs();

send_updates();

}

Introduction ● Design ● Results ● Conclusion 

Pick updates

@node 1

Compute beliefs

@node 1

Send updates -

>node 2

Pick updates

@node 2

Compute beliefs

@node 2



Speculation Extracts Parallelism by Relaxing Order

Chronos [12]

24Introduction ● Design ● Results ● Conclusion 



Research Gap

Existing accelerators are 

● overly specific [5]

● too costly to implement [11]

General Belief Propagation Accelerator on Chronos

25Introduction ● Design ● Results ● Conclusion 



Design Goal

Eliminate deadlocks while retaining functional correctness

Scaling and optimizing to improve:

● Convergence coverage

● Convergence rate

● Scalability

● Efficiency

26Introduction ● Design ● Results ● Conclusion 



System Diagram

27Introduction ● Design ● Results ● Conclusion 

Tile Tile Tile Tile

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

Tile 

Infrastructure

Tile 

Infrastructure
Tile 

Infrastructure

Tile 

Infrastructure



Deadlock Avoidance Prioritizes the GVT

28Introduction ● Design ● Results ● Conclusion 

Core Core Core Core

Task Send 

Buffer

Local 

virtual 

time

Global virtual 

time (GVT)

Arbiter



Prioritizing the GVT with Reservations

29

Reservation for GVT

Introduction ● Design ● Results ● Conclusion 

Task Send Buffer



Prioritizing the GVT with Resource Aborts

30

Resource Aborts

Introduction ● Design ● Results ● Conclusion 



Tile

Deadlock Avoidance

31Introduction ● Design ● Results ● Conclusion 

Task Held Back



Tile

Deadlock Avoidance

32Introduction ● Design ● Results ● Conclusion 

Task Unit Memory

Task SpillingSpill

level



Results

1. Coverage improved by removing deadlocks that occur with 

large graphs

2. Rate improved by optimizing size and configuration of 

accelerator

3. Scalability demonstrated with more PEs computing larger 

graphs

4. Efficiency used to extract parallelism by lowering priority queue 

overhead

33Introduction ● Design ● Results ● Conclusion 



Conclusions

Relaxed-priority BP and task-based parallelism can be combined to 

improve convergence coverage, convergence rate, and scalability of 

belief propagation through increased efficiency.

Implementing the accelerator on an FPGA makes it accessible for use 

in broader applications.

35Introduction ● Design ● Results ● Conclusion 



References

[0] L. Han, “Accelerating Belief Propagation with Hardware Speculative Parallelism,” Undergrad Thesis, University of Toronto, Toronto, Canada, 
2023.
[1] T. Yan, X. Yang, G. Yang, and Q. Zhao, “Hierarchical Belief Propagation on Image Segmentation Pyramid,” IEEE Transactions on Image 
Processing, 2023, doi: 10.1109/TIP.2023.3299192.
[2] M. C. E. Simsekler and A. Qazi, “Adoption of a Data‐Driven Bayesian Belief Network Investigating Organizational Factors that Influence Patient 
Safety,” Risk Analysis, vol. 42, no. 6, pp. 1277–1293, Jun. 2022, doi: 10.1111/risa.13610.
[3] A. Al Nuairi, M. C. E. Simsekler, A. Qazi, and A. Sleptchenko, “A data-driven Bayesian belief network model for exploring patient experience 
drivers in healthcare sector,” Ann Oper Res, Jun. 2023, doi: 10.1007/s10479-023-05437-9.
[4] L. Mkrtchyan, U. Straub, M. Giachino, T. Kocher, and G. Sansavini, “Insurability risk assessment of oil refineries using Bayesian Belief Networks,” 
Journal of Loss Prevention in the Process Industries, vol. 74, p. 104673, Jan. 2022, doi: 10.1016/j.jlp.2021.104673.
[5] Y. Sun, Y. Shen, W. Song, Z. Gong, X. You, and C. Zhang, “LSTM Network-Assisted Belief Propagation Flip Polar Decoder,” in 2020 54th 
Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA: IEEE, Nov. 2020, pp. 979–983. doi: 
10.1109/IEEECONF51394.2020.9443504.
[6] J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible inference, Rev. 2. ed., Transferred to digital printing. in The Morgan 
Kaufmann series in representation and reasoning. San Francisco, Calif: Morgan Kaufmann, 2009.
[7] J.-F. Yan, J. Zeng, Y. Gao, and Z.-Q. Liu, “Communication-efficient algorithms for parallel latent Dirichlet allocation,” Soft Comput, vol. 19, no. 1, 
pp. 3–11, Jan. 2015, doi: 10.1007/s00500-014-1376-8.
[8] G. Elidan, I. McGraw, and D. Koller, “Residual Belief Propagation: Informed Scheduling for Asynchronous Message Passing,” 2006. [Online]. 
Available: http://www.robotics.stanford.edu/~galel/papers/ElidanRBP.pdf
[9] J. Gonzalez, Y. Low, and C. Guestrin, “Residual Splash for Optimally Parallelizing Belief Propagation,” in Proceedings of the Twelth International 
Conference on Artificial Intelligence and Statistics, PMLR, Apr. 2009, pp. 177–184. [Online]. Available: 
https://proceedings.mlr.press/v5/gonzalez09a.html
[10] V. Aksenov, D. Alistarh, and J. H. Korhonen, “Relaxed Scheduling for Scalable Belief Propagation,” Dec. 2020. [Online]. Available: 
https://proceedings.neurips.cc/paper/2020/file/fdb2c3bab9d0701c4a050a4d8d782c7f-Paper.pdf
[11] G. Posluns, Y. Zhu, G. Zhang, and M. C. Jeffrey, “A scalable architecture for reprioritizing ordered parallelism,” in Proceedings of the 49th 
Annual International Symposium on Computer Architecture, New York New York: ACM, Jun. 2022, pp. 437–453. doi: 10.1145/3470496.3527387.
[12] M. Abeydeera and D. Sanchez, “Chronos: Efficient Speculative Parallelism for Accelerators,” Mar. 2020. doi: 10.1145/3373376.3378454.

36


	Slide 1: Accelerating Belief Propagation with Task-Based Hardware Parallelism
	Slide 2
	Slide 3: Belief Propagation
	Slide 4: Belief Propagation
	Slide 5: Belief Propagation
	Slide 6: Belief Propagation
	Slide 7: Belief Propagation
	Slide 8: Belief Propagation
	Slide 9: Belief Propagation
	Slide 10: Applications and Significance
	Slide 11: Metrics
	Slide 12: Program Flow
	Slide 13: Synchronous Update Order
	Slide 14: Synchronous Update Order
	Slide 15: Synchronous Update Order
	Slide 16: Residual Update Order
	Slide 17: Residual Update Order
	Slide 18: Residual Update Order
	Slide 19: Residual Splash Update Order
	Slide 20: Relaxed-Priority Update Order
	Slide 21: Algorithmic Innovations
	Slide 22: Task-Based Hardware Parallelism
	Slide 23: Task-Based Hardware Parallelism 
	Slide 24: Speculation Extracts Parallelism by Relaxing Order
	Slide 25: Research Gap
	Slide 26: Design Goal
	Slide 27: System Diagram
	Slide 28: Deadlock Avoidance Prioritizes the GVT
	Slide 29: Prioritizing the GVT with Reservations
	Slide 30: Prioritizing the GVT with Resource Aborts
	Slide 31: Deadlock Avoidance
	Slide 32: Deadlock Avoidance
	Slide 33: Results
	Slide 35: Conclusions
	Slide 36: References

